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Research Highlights 

 First motion polarities determined using an ML model yielded results comparable with manual measurements. 
 Discrepancies were mainly observed at stations in larger epicentral distances or equipped with accelerometers. 

Introduction 
The large quantities of seismic waveform data available have rendered their manual analysis a challenging task. The 
unification of seismic networks in Greece (e.g., Evangelidis et al., 2021) has improved the completeness of the seismic 
catalogs provided by routine analysis. However, as the number of earthquakes is multiplied almost tenfold for every 
lowering of magnitude by a unit, manual analysis can only go so far before the workload becomes prohibiting. 
Conventional automatic seismic P- and S-wave arrival-time picking methods also have downsides, depending on the 
objective function used in each case. Despite providing quick solutions, the measurements of these automatic methods 
are usually less accurate than those performed by human analysts, and they need to be manually revised for their quality 
to be improved. However, in recent years, the rise of Machine-Learning (ML) models has revolutionized the automatic 
processing of seismological data. ML models, such as PhaseNet (Zhu & Beroza, 2019) and EQTransformer (Mousavi et 
al., 2020), are now used for the automatic analysis of huge datasets, greatly augmenting the number of detected events 
and lowering the completeness magnitude of seismic catalogs. Even more surprisingly, in terms of accuracy, these ML 
methods provide results that are on par with manually analyzed data (e.g., Mousavi et al., 2020), and can even recognize 
P- and S-wave arrivals in noisy signals without the application of a filter (e.g., Zhu & Beroza, 2019). 

An even more challenging task is the automatic measurement of P-wave First Motion Polarities (FMPs). For events of 
moderate or higher magnitude (e.g., M3.6), the focal mechanisms can usually be determined through moment tensor 
inversion, by fitting synthetic waveforms to the observed ones. FMPs, on the other hand, are useful for determining 
focal mechanisms for weak-magnitude events (M3.5), particularly when a local network is available near the 
epicentral area. FMPs depend on the radiation pattern of seismic energy at an earthquake’s focus. In the double-couple 
model, FMPs are distributed in four quadrants, characterized by the alternating sign of the first motion recorded at the 
vertical component of the seismic stations. These first pulses can be impulsive or emergent, which depends on the angle 
of emergence of the seismic ray at the focus, relative to the radiation pattern of the earthquake, which in turn depends 
on the focal mechanism; i.e., the strike, dip, and rake of the source. Rays originating near the P or T principal axes of 
the moment tensor are expected to produce impulsive negative or positive first motions, respectively. On the other hand, 
rays originating near the nodal planes or the null axis are likely to produce emergent first motions, which cannot be 
easily distinguished. Furthermore, the Signal-to-Noise Ratio (SNR) of weak-magnitude events can be too low for even a 
P-wave arrival to be picked. The application of filters to lower the noise level and improve SNR can distort the first 
pulse and lead to an erroneous FMP measurement. Even when a P-wave arrival-time can be roughly assessed, the 
analyst must decide whether to characterize the polarity of the first motion or skip it to avoid an error. Other 
measurements that can help constrain the focal mechanisms of weak events include the S-to-P amplitude ratio and the 
S-wave polarization direction (e.g., Kapetanidis et al., 2015).  

As the characterization of the FMP is a pattern recognition task, it has also been the subject of studies employing 
methods based on artificial intelligence. Such ML models can recognize these patterns and classify the first pulse as 
being positive or negative, assess whether it is impulsive or emergent, or decide to dismiss a measurement if the polarity 
cannot be safely determined. Examples of such ML models include those presented by Ross et al. (2018) and Zhao et al. 
(2023). Both models were trained on a large dataset of seismic waveforms from Southern California, and the authors 
reported a precision of ~95% or more compared to the respective FMP measurements by human analysts.  

Background 
The Corinth Rift Laboratory is a local seismological network that has been established in the Western Gulf of Corinth 
(WGoC; Figure 1) since the early 2000s (Chiaraluce et al., 2022). It is one of the Near-Fault Observatories (NFOs) of 
the European Plate Observing System (EPOS), complemented by stations of the regional Hellenic Unified Seismic 



Network (HUSN). WGoC is one of the most seismically active areas in Greece, due to a high extension rate, reaching 
~16 mm/yr in a ~N-S direction (Avallone et al., 2004), mainly characterized by E-W normal faulting. Between 
December 2020 and February 2021, an intense seismic swarm occurred in WGoC (Kaviris et al., 2021; Serpetsidaki et 
al., 2023). The swarm mainly evolved in three phases, each triggered by a significant earthquake: an Mw=4.6 event on 
23 December 2020 near Marathias; an Mw=5.0 event on 12 January 2021 near Trizonia Island; and an Mw=5.3 event on 
17 February 2021 (Zahradník et al., 2022), north of Psathopyrgos. An examination of the aftermath period up to 
December 2022, showed that the swarm activity diminished after March 2021, and a background seismicity level was 
established, with only a few spatiotemporal clusters and two significant earthquakes of Mw=4.2 and Mw=4.3, on 30 
November 2021 and 29 July 2022, respectively (Kaltsas et al., 2024). In the framework of the studies of Serpetsidaki et 
al. (2023) and Kaltsas et al. (2024), a total of 117 focal mechanisms were calculated between December 2020 and 
December 2022, with 20 from the former study being assessed through moment tensor inversion, while the rest were 
determined using P-wave first motion polarities. Most focal mechanisms indicate normal faulting, with a smaller 
proportion of strike-slip or oblique-normal events also being detected.  

 
Figure 1. The Western Gulf of Corinth (WGoC) in Central Greece. Seismological and accelerometric stations of the 

Corinth Rift Laboratory Near-Fault Observatory (CRL-NFO) are depicted as triangles. The focal mechanisms of selected 
significant earthquakes of the period December 2020 – December 2022 are presented with beachball symbols. The relocated 
seismicity of the period December 2020 – February 2021 (gray circles) is after Serpetsidaki et al. (2023). The fault lines are 

from the NOAfaults database (Ganas et al., 2013). 

Objectives 
In this work, we apply a machine-learning model to measure the FMPs and determine the focal mechanisms of 
earthquakes that occurred between December 2020 and December 2022 in the western Gulf of Corinth. This will 
provide a perspective on the efficiency and accuracy of the applied model with the abovementioned dataset, as there are 
also available manually measured FMPs for a subset of the events that will be processed. The latter will be used to 
examine the validity of the FMPs, but also to measure the difference in the resulting focal mechanisms derived from the 
herein-applied method compared to previous results of manually measured FMPs. 

Data and Methods 
We use a catalog of ~460 manually analyzed and relocated events from the seismic crisis in WGoC between December 
2020 and February 2021 (Serpetsidaki et al., 2023), as well as 82 events from the aftermath period between March 2021 
and December 2022 (Kaltsas et al., 2024); the selected events have M2.0. In both cases, there is a subset of events 
with available manually measured FMPs and calculated focal mechanisms with a grid-search method, that will be used 
for comparison. We acquire seismic waveform data from the EIDA nodes of Reseau Sismologique et Geodesique 
Francais (RESIF; https://seismology.resif.fr/eida/), for stations of the CRL network, and the National Observatory of 
Athens – Geodynamics Institute (NOA-GI; http://eida.gein.noa.gr/webdc3/), for stations of HUSN. 

We employ the DiTing-Motion (DTM) machine-learning model (Zhao et al., 2023) to automatically measure the FMPs 
at local stations in the area of WGoC. For each station, the waveform recording of the vertical component is detrended, 
resampled to 100 sps, if necessary (e.g., for accelerometric stations, which are usually at 200 sps), and cropped to a 128-
sample window of 0.64 s around the arrival-time of the P-wave. We follow the workflow established by Zhao et al. 



(2023), also measuring the S-to-P amplitude ratio (SPR) and employing the HASH code (Hardebeck & Shearer, 2002, 
2003) to determine the focal mechanisms using both FMPs and SPR. To assess the influence of the P-wave’s arrival-
time accuracy on FMP measurements, we also test the procedure after re-picking the P-wave in the vicinity of the 
previously available arrival-time with Phasenet, pre-trained with data from the INSTANCE dataset (Michelini et al., 
2021). We examine DTM results in terms of FMP measurement accuracy, compared to manually analyzed events, both 
automatically and by visually reviewing the automatic FMP measurements (Figure 2, left). The discrepancies are also 
examined on a per-station level to identify any systematic issues related to particular stations. For the difference 
between the new focal mechanisms and the previously available ones from the common subset, we measure the Kagan 
angle between the two solutions and also examine the whole image of their beachball projections on the map for visible 
similarities or differences. 

 
Figure 2. (Left) Example of automatic FMP measurements derived by the DiTing-Motion machine-learning model. The 
blue letters marked with “U” denote compression while the red letters marked with “D” denote dilatation. Gray lines 

(marked with “x”) denote no measurement. “I” and “E” denote impulsive and emergent first motion, respectively. SNR is the 
Signal-to-Noise Ratio. (Right, Top) focal mechanism derived from manually measured FMPs and a grid-search over fault 
plane solutions that are consistent with the FMPs. (Right, Bottom) focal mechanism for the same event derived by HASH 

using the FMPs of the left panel. The RMS value refers to the angular difference between the best solution (bold blue nodal 
planes) and the valid individual fault planes (thin nodal planes). Blue circles denote compression and red triangles denote 

dilatation. Small red P and blue T symbols show the distribution of the P- and T-axes projections for valid individual 
solutions. 

Results  
The automated workflow yielded 370 focal mechanisms for the WGoC crisis and 65 for the aftermath period, classified 
by HASH with a quality grade “A”. Figure 3 (left) shows a confusion matrix comparison between characterized 
polarities by the applied workflow and FMPs measured for the second period by Kaltsas et al. (2024), for 65 common 
events. The comparison shows that 82-89% of the FMPs were assessed in a similar manner both automatically and 
manually. Notably, however, 10-13% of FMPs were discarded by DTM. A closer examination revealed that the cases of 
“missed” FMPs by DTM mostly belong to either stations with accelerometric instruments, or stations at larger 
epicentral distances (>30 km). With the more distant stations removed from the comparison, the percentages of 
consistent FMP measurements rise to 87-91% and “missed” FMPs drop to 7-8% (Figure 3, right). Still, ~1% of 
compressional and 6% dilatational manual FMPs were characterized as being of the opposite polarity by DTM. A more 
detailed example is presented in Figure 4 for common events of the crisis period, where FMPs are additionally 



characterized as impulsive or emergent. This is a more subjective matter from the point of view of a human analyst, as 
an “emergent” characterization may refer to either a “gentle slope” first motion or a low-amplitude first motion, which 
can also be due to low SNR. DTM results show a larger percentage of agreement for impulsive FMPs than for emergent 
ones. A larger percentage of manually characterized “emergent” FMPs also tend to be rejected by DTM, which 
indicates that the classification of the ML model is generally on the more conservative side. An emergent FMP can 
probably be misjudged as an impulsive FMP of the same polarity, less probably as an emergent FMP of the opposite 
polarity, and even more rarely as an impulsive FMP of the opposite polarity. 

      
Figure 3. Confusion matrix between FMPs measured with DTM (rows) and manually (columns) for the aftermath period 
(March 2021 – December 2022). (Left) for all available stations, (Right) only for stations at epicentral distances < 30 km. 

Letters “C” and “D” denote Compression and Dilatation, respectively. The “Null” row indicates “missed” FMPs, while the 
“Null” column corresponds to additional automatic FMPs missing from the manual dataset. 

 

 
Figure 4. Same as Figure 3, but for the crisis period (December 2020 – February 2021). Symbols “+” and “-” denote 

emergent, whereas letters “C” and “D” denote impulsive compressional and dilatational FMPs, respectively.  

 
A visual inspection of a subset of measured FMPs alongside the respective P-wave first pulses on the vertical 
component (e.g., Figure 2, left) confirmed the findings of the confusion matrices, with a generally impressive accuracy 
of FMP measurement in the majority of instances. There were, however, cases where the polarity of the first motion 
was seemingly evident to the human eye, but for some reason DTM either dismissed the measurement or misjudged the 
polarity. As previously noted, null measurements were mostly observed at more distant stations, where the first motion 
usually has a larger-period pulse than at stations near the epicenter. Erroneous DTM measurements mainly occurred in 
instances where the P-wave arrival-time pick was not accurate enough, which may be attributed to the applied filter 
during picking. We tested re-picking on the vertical component with Phasenet, retaining the P-wave pick that was found 
within 1 sec of the previously available pick. When the DTM model was re-applied, some results were changed, with 
new FMPs added, but also with some polarities being reversed and, in some cases, previous FMP measurements being 
rejected. For the dataset of the 2020-2021 crisis period, the confusion matrix showed an accuracy of 89% and 80% for 
positive and negative polarities, respectively, taking into account stations at epicentral distances < 30 km and excluding 
accelerometric stations, after re-picking the P-waves with PhaseNet. 



Concerning the focal mechanisms, the similarities between the solutions of the automated workflow with DTM+HASH 
and those with manually measured FMPs and a grid-search over all fault plane solutions that satisfy a minimum 
percentage of measured FMPs are quite strong (Figures 5 and 6). HASH was configured to allow for one (1) assumed 
erroneous FMP for each event. Most of the common solutions with a quality grade A, for both the crisis and aftermath 
periods, exhibit a Kagan angle of less than 30°. Larger deviations can be visibly noticed as a rotation in the focal sphere, 
mainly affecting the strike-slip component of the focal mechanism. Although the DTM+HASH solutions usually 
include fewer FMPs than the manual ones, the additional measurement of the S-to-P amplitude ratio likely helps with 
providing a constrained solution. However, the lack of data from some local stations, particularly for small-magnitude 
events, can significantly reduce the available FMPs, making the derivation of a quality grade A focal mechanism more 
difficult. This is especially true during the crisis period (Figure 5), as several local stations experienced technical issues 
that were later resolved during the aftermath period. Significant differences may also occur as the manual solutions 
were constrained by the addition of FMP measurements at more distant HUSN stations, where the DTM approach 
seems to fail to measure the FMP, as also happens sometimes at accelerometric stations due to low SNR. Figure 6 
shows a comparison between 57 common solutions of manual and DTM+HASH grade A solutions for the aftermath 
period, indicating very similar focal mechanisms in both cases, with few notable discrepancies. 

 
Figure 5. Focal mechanisms of 31 earthquakes during the crisis period, (Left) derived from manually determined FMPs 

and grid-search over adequate fault plane solutions, (Right) derived with DTM+HASH. The common events presented are 
those for which the DTM+HASH solutions yielded a quality grade A. 

 
Figure 6. Same as Figure 5, but for the focal mechanisms of 57 common earthquakes during the aftermath period. 

Conclusions  
In this work, we showcased an application of the DiTing-Motion machine-learning model to fully automate the 
procedure of first motion polarity measurements in order to calculate focal mechanisms of small earthquakes in the 
Western Gulf of Corinth, Central Greece. As with other methods that employ artificial intelligence, this is a useful tool 
that can automatically extract a large amount of information that was previously unavailable. We assess the accuracy of 
the model to identify the polarity of the first motion and examine the cases where it rejects or produces an erroneous 
measurement. The method requires the availability of accurate P-wave arrival picks at local velocimetric stations for 
best results. With enough FMP data, even allowing for 1 or 2 erroneous measurements, an accurate focal mechanism 
solution can be determined. Despite the abovementioned issues, the results are still remarkable, given that they were 
produced with a model that was trained with a completely different dataset at a different site. As ML models can be 
improved by re-training, using site-specific data, this method is promising, regarding the generation of large datasets of 
focal mechanisms of small earthquakes. The latter could be useful for studies of fault geometries, spatial stress patterns, 
and even temporal stress changes prior to impending large earthquakes. 
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